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What We Talk About When We Talk
About Viruses
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But viruses infect organisms across the

diversity of life

Humans
Mammals
Birds
Insects
Plants

» HIV, Ebolazaire, Rhinovirus,...

» |entivirus, ...

» Avian influenza, ...

A A A A A

» Baculovirus, ...
» Jobacco mosaic virus, ...




But viruses infect organisms across the
diversity of life, including microbes

=
Humans <« » HIV, Ebolazaire, Rhinovirus,...
Mammals < » Lentivirus, ...
Birds <« » Avian influenza, ...
Insects » Baculovirus, ...
Plants < » Tobacco mosaic virus, ...
Amoeba <« » Giant mimiviruses
Archaea « » Sulfulobus spindle viruses
Bacteria

» Bacteriophages (lambda, T4, ...

-
—— —

Mimivirus — Raoult et al. CID 2007 SSvV ;buemin etal. J. Vir. 2015




The life of a bacterial virus (phage)
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A “predator-prey” model is the basis for
studies of virus-microbe population dynamics

Dynamic model

—
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media inflow  nutrient consumption gutflow 10
dR = — =
cell division infection and lysis outflow _
dN — —~N— ~ = | ¢
— = ef(R)N — ONV — wN —
dt g
lysis infection outflow s
av A~ = 9 10°
? —— = BNV — ¢NV — WV ©
dt = A
O
—
Interactions: ~
Resource inflow/outflow
Host growth and outflow )
10

Viral lysis and outflow 10° 0 0"
Prey, ml~! @
Result: “Lotka-Volterra” like

predator-prey dynamics Counter-clockwise cycles

Similar model proposed by Campbell (1961) Evolution 15: 153
& adapted to phage-bacteria chemostats by Levin et al. (1977) Am. Nat. I | 1:3




The same types of cycles can be observed in

virus-host population dynamics (in the lab)
]

“Predator-prey” like cycles
between phage T4 and E. coli B

Virus

Data: Bohannan & Lenski,
Ecology (1997)

Take-home message:

Population density (ml™!)

Original models of viral-host
dynamics presuppose a “simple” .

one virus, one host relationship. 0 50 10(0 )150 200
Time (hours

Further analysis of this and other cases in:
Weitz, Quantitative Viral Ecology: Dynamics of Viruses and
Their Microbial Hosts, Princeton University Press, 2015.




The Problem of Scales in L g s
Quantitative Viral Ecology: . b o ((
Linking Mechanism to Pattern -so0- ’ / 2
-100 0 100
Longitude
Which scale-up to massive
ecosystem effects when integrated
10° over the global oceans.
i Virus
Eqof
§104
;éloz Host Infection and lysis leads to
oscillatory dynamics at the
107 ————————  population scale...

Virus-host interactions modify
the fate of cells on time scales
similar to division times...

Time (hours)

Quantitative

Viral Ecology

DYNAMICS OF VIRUSES AND
THEIR MICROBIAL HOSTS

2) PRINCETON UNIVERSITY PRESS



The Problem of Scales in IR S .;‘i; .
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Quantitative Viral Ecology: . \
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Virus-host interactions .iouuy
the fate of cells on time scales
similar to division times...

Prokaryotes per mL (logg scale)

Quantitative
Viral Ecology

DYNAMICS OF VIRUSES AND
THEIR MICROBIAL HOSTS

Joshua S. Weitz




But do viruses of microbes do more than
kill or prepare to kill?



Lysogeny — ‘Lessons from a Simple System’
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Lysogeny — ‘Lessons from a Simple System’
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Lysogeny — ‘Lessons from a Simple System’
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Infection

YFP-labeled
phage

mCherry

Infected cell

\

Infecting
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Lytic T

Lysogenic - Normal growth
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Lysogenic cell
expressing
red ﬂuorescence

x\ Lytic cells
producing

new phages

CeII lysis
and new
phages

120 min

Golding et al. Ann Rev. Biophys. 201 |
&
Ptashe, A Genetic Switch: Phage Lambda

Revisisted, 2004.




Why Be Temperate?

A 40+ year-old question

THEORETICAL POPULATION BIOLOGY 26, 93-117 (1984)

The Population Biology of Bacterial Viruses:

Why Be Temperate
FRANK M. STEWART AND BRUCE R. LEVIN

Department of Mathematics, Brown University,
Providence, Rhode Island 02912, and
Department of Zoology, University of Massachuselts,
Amherst, Massachusetts 01003

Received May 23, 1983

F=p(C—r)—ey(r)(L + (1 - as)S),
L=y(r)L +A6;ST— (p+ &+ 1)L,
S=(1—ag)y(r)S —6:ST+ 1L —pS,
T=EL+ (1 —1)6;8T -6, LT —pT.
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Feast or Famine Hypothesis
Premise: temperate phage do better when few hosts
are available and extracellular mortality rate are high.

Caveat: “In spite of the intuitive appeal of this low
density hypothesis, we are unable to obtain solutions
consistent with it using the model presented here.”



Lysogeny and Plankton Blooms:

An Inverse Relationship with Plankton Density

Lytic Infections
(FIC; % of bacteria)

Lysogeny
(% of bacteria)

20 -

15 -

10 -

20 -

15 -

10 -

oolooII ooo;l;o

Jan TFeb
Summer

‘Seasonal Timebombs’:
Lysogeny prevalent given
low productivity and lysis
elevated at high productivity

Brum et al. ISME J. 2015
&
McDaniel et al. Nature 2002



An Alternative Hypothesis:
“Piggyback-the-Winner”

A Lysogeny
Fry
=
3]
<
g
>
Lysis
>
Low High
Density/Productivity

Piggyback-the-winner — lysogeny is
positively correlated with increases in host
density and productivity.

Knowles et al. Nature 2016
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iggyback-the-Winner:

Re-examining the metagenomics evidence
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Piggyback-the-winner — lysogeny is
positively correlated with increases in host
density and productivity.

Knowles et al. Nature 2016
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Piggyback-the-Winner:
Re-examining the metagenomics evidence

A Take-away
Absence of evidence for a positive correlation
\ between lysogeny proxies and cell density.
Weitz et al. Nature 2017 & response
from Knowles & Rohwer, Nature 2017

Viral Activity

Similar absence of evidence when examining
the ratio of viruses to microbes as a proxy. -« .

Low Alrasheed, Jin & Weitz, Nat Comm 2019 2 os s

log10(Microbial cells mI™")

Piggyback-the-winner — lysogeny is
positively correlated with increases in host
density and productivity.

Knowles et al. Nature 2016



What environmental conditions should favor
lysogeny rather than lysis?
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On old lesson:
A bird in the hand is worth two in the bush.
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A virus in the cell is worth N in the bloom.



What environmental conditions should favor
lysogeny rather than lysis?

On old lesson:
A bird in the hand is worth two in the bush.

A new puzzle:

A virus in the cell is worth N in the bloom.

But, what is N¢



Viral proliferation at the individual level

for lytic strategies
|

Obligately lytic viruses

Rhor =3
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Burst

Progeny 3




Viral proliferation at the individual level

for lytic strategies and latent strategies
|

Obligately lytic viruses

Latent viruses R =3

R =3 )
hor (including temperate phage)h_ . (i{ ' ver R
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Viral proliferation at the individual level
for lytic strategies and latent strategies

Obligately lytic viruses R

hor ~ 3
' ":Z,‘ Infection

’ ?’ " '(%
' % Pro ogeny 1

Entry LySISl( \ %

’ ’b > _/
’ (ﬁ> Progeny 2
Mother 0
@ ‘ﬁ’s.ﬁﬁk v
@ N

Burst Progeny 3

Two vastly different strategies can lead to
the same ‘fithess’ at the individual level.

How does this depend on cell densities?

Latent viruses

(including temperate phage) _ (i{




Population dynamics of lytic viruses

Population perspective

Individual perspective

Obligately lytic (e.g., T4)
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Population dynamics of lytic viruses
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2 ; ; logistic growth infection cell death
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Population dynamics of lytic viruses
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Obligately lytic (e.g., T4)
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Population dynamics of lytic viruses

Population perspective

Individual perspective

Obligately lytic (e.g., T4)
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Population dynamics of lytic viruses

GE, Take-away on cell death
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Population dynamics of latent viruses

Population perspective

Individual perspective

Latent viruses (e.g., phage ) )
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Population dynamics of latent viruses

GEJ Latent viruses (e'g'! phage )\) logistic growth infection cell death
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Population dynamics of latent viruses

GEJ Latent viruses (e'g'! phage )\) logistic growth infection  cell death
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Population dynamics of latent viruses

Population perspective

Individual perspective

Latent viruses (e.g., phage ) )
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Population dynamics of latent viruses

2 L2 Take-away g
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Population dynamics of chronic viruses

Population perspective

Individual perspective

Chronic viruses (e.g., filamentous M13)
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Population dynamics of chronic viruses
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Population dynamics of chronic viruses

Population perspective

Individual perspective

Chronic viruses (e.g., filamentous M13)
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Weitz et al.“Viral fitness across a continuum

from lysis to latency”.Virus Evolution, 2019




Population dynamics of chronic viruses

.E Chrol Take- away cell death
o . - dS
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3 2 . R . . cell death
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Weitz et al.“Viral fitness across a continuum
from lysis to latency”.Virus Evolution, 2019



What environmental conditions should favor
lysogeny rather than lysis?

Answering this question requires a unified
metric, e.g.,:

Ro: the average number of new infected cells
produced by a single (typical) infected cell and

1ts progeny virions in an otherwise susceptible
population.
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Take-away

Loop-based approach decomposes viral fitness

into lytic, lysogenic, and lyso-lytic loops,
transcends model details & reveals generic

mechanisms for the benefits of latency.

Li, Cortez & Weitz, biorxiv: 709758




Q: What is a Virus?

A) %) B) . C)

Virion Lysogen Lytically

infected cell
D: All of the above.

Viral fitness in the environment depends on measuring the
present and long-term value of infection across the entire
viral life cycle, whether inside or outside hosts.

A new challenge for theory, experiments, and field-work.
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